|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Classification of the Orthogonal Separable Webs for the Hamilton–Jacobi and Klein–Gordon Equations on 3-Dimensional Minkowski Space
Carlos Valeroa, Raymond G. McLenaghanb a Department of Mathematics and Statistics, McGill University,
Montréal, Québec, H3A 0G4, Canada
b Department of Applied Mathematics, University of Waterloo,
Waterloo, Ontario, N2L 3G1, Canada
Аннотация:
We review a new theory of orthogonal separation of variables on pseudo-Riemannian spaces of constant zero curvature via concircular tensors and warped products. We then apply this theory to three-dimensional Minkowski space, obtaining an invariant classification of the forty-five orthogonal separable webs modulo the action of the isometry group. The eighty-eight inequivalent coordinate charts adapted to the webs are also determined and listed. We find a number of separable webs which do not appear in previous works in the literature. Further, the method used seems to be more efficient and concise than those employed in earlier works.
Ключевые слова:
Hamilton–Jacobi equation, Laplace–Beltrami equation, separation of variables, Minkowski space, concircular tensors, warped products.
Поступила: 3 июля 2021 г.; в окончательном варианте 2 марта 2022 г.; опубликована 12 марта 2022 г.
Образец цитирования:
Carlos Valero, Raymond G. McLenaghan, “Classification of the Orthogonal Separable Webs for the Hamilton–Jacobi and Klein–Gordon Equations on 3-Dimensional Minkowski Space”, SIGMA, 18 (2022), 019, 28 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1813 https://www.mathnet.ru/rus/sigma/v18/p19
|
Статистика просмотров: |
Страница аннотации: | 73 | PDF полного текста: | 25 | Список литературы: | 17 |
|