|
Algebras of Non-Local Screenings and Diagonal Nichols Algebras
Ilaria Flandoli, Simon D. Lentner Department of Mathematics, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Аннотация:
In a vertex algebra setting, we consider non-local screening operators associated to the basis of any non-integral lattice. We have previously shown that, under certain restrictions, these screening operators satisfy the relations of a quantum shuffle algebra or Nichols algebra associated to a diagonal braiding, which encodes the non-locality and non-integrality. In the present article, we take all finite-dimensional diagonal Nichols algebras, as classified by Heckenberger, and find all lattice realizations of the braiding that are compatible with reflections. Usually, the realizations are unique or come as one- or two-parameter families. Examples include realizations of Lie superalgebras. We then study the associated algebra of screenings with improved methods. Typically, for positive definite lattices we obtain the Nichols algebra, such as the positive part of the quantum group, and for negative definite lattices we obtain a certain extension of the Nichols algebra generalizing the infinite quantum group with a large center.
Ключевые слова:
Nichols algebras, quantum groups, screening operators, conformal field theory.
Поступила: 2 ноября 2020 г.; в окончательном варианте 14 февраля 2022 г.; опубликована 11 марта 2022 г.
Образец цитирования:
Ilaria Flandoli, Simon D. Lentner, “Algebras of Non-Local Screenings and Diagonal Nichols Algebras”, SIGMA, 18 (2022), 018, 81 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1812 https://www.mathnet.ru/rus/sigma/v18/p18
|
Статистика просмотров: |
Страница аннотации: | 51 | PDF полного текста: | 40 | Список литературы: | 18 |
|