|
Эта публикация цитируется в 17 научных статьях (всего в 17 статьях)
Celestial $w_{1+\infty}$ Symmetries from Twistor Space
Tim Adamoab, Lionel Masonc, Atul Sharmac a School of Mathematics, University of Edinburgh, EH9 3FD, UK
b Maxwell Institute for Mathematical Sciences,
University of Edinburgh, EH9 3FD, UK
c The Mathematical Institute, University of Oxford, OX2 6GG, UK
Аннотация:
We explain how twistor theory represents the self-dual sector of four dimensional gravity in terms of the loop group of Poisson diffeomorphisms of the plane via Penrose's non-linear graviton construction. The symmetries of the self-dual sector are generated by the corresponding loop algebra $Lw_{1+\infty}$ of the algebra $w_{1+\infty}$ of these Poisson diffeomorphisms. We show that these coincide with the infinite tower of soft graviton symmetries in tree-level perturbative gravity recently discovered in the context of celestial amplitudes. We use a twistor sigma model for the self-dual sector which describes maps from the Riemann sphere to the asymptotic twistor space defined from characteristic data at null infinity $\mathscr{I}$. We show that the OPE of the sigma model naturally encodes the Poisson structure on twistor space and gives rise to the celestial realization of $Lw_{1+\infty}$. The vertex operators representing soft gravitons in our model act as currents generating the wedge algebra of $w_{1+\infty}$ and produce the expected celestial OPE with hard gravitons of both helicities. We also discuss how the two copies of $Lw_{1+\infty}$, one for each of the self-dual and anti-self-dual sectors, are represented in the OPEs of vertex operators of the 4d ambitwistor string.
Ключевые слова:
twistor theory, scattering amplitudes, self-duality.
Поступила: 22 ноября 2021 г.; в окончательном варианте 17 февраля 2022 г.; опубликована 8 марта 2022 г.
Образец цитирования:
Tim Adamo, Lionel Mason, Atul Sharma, “Celestial $w_{1+\infty}$ Symmetries from Twistor Space”, SIGMA, 18 (2022), 016, 23 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1810 https://www.mathnet.ru/rus/sigma/v18/p16
|
Статистика просмотров: |
Страница аннотации: | 89 | PDF полного текста: | 21 | Список литературы: | 17 |
|