|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Explicit Triangular Decoupling of the Separated Lichnerowicz Tensor Wave Equation on Schwarzschild into Scalar Regge–Wheeler Equations
Igor Khavkineab a Charles University in Prague, Faculty of Mathematics and Physics,
Sokolovská 83, 186 75 Praha 8, Czech Republic
b Institute of Mathematics of the Czech Academy of Sciences,
Zitná 25, 115 67 Praha 1, Czech Republic
Аннотация:
We consider the vector and the Lichnerowicz wave equations on the Schwarzschild spacetime, which correspond to the Maxwell and linearized Einstein equations in harmonic gauges (or, respectively, in Lorenz and de Donder gauges). After a complete separation of variables, the radial mode equations form complicated systems of coupled linear ODEs. We outline a precise abstract strategy to decouple these systems into sparse triangular form, where the diagonal blocks consist of spin-$s$ scalar Regge–Wheeler equations (for spins $s=0,1,2$). Building on the example of the vector wave equation, which we have treated previously, we complete a successful implementation of our strategy for the Lichnerowicz wave equation. Our results go a step further than previous more ad-hoc attempts in the literature by presenting a full and maximally simplified final triangular form. These results have important applications to the quantum field theory of and the classical stability analysis of electromagnetic and gravitational perturbations of the Schwarzschild black hole in harmonic gauges.
Ключевые слова:
Schwarzschild black hole, linearized gravity, harmonic gauge, Regge–Wheeler equation, rational ODE, computer algebra, rational solution, decoupling.
Поступила: 16 марта 2021 г.; в окончательном варианте 22 января 2022 г.; опубликована 4 февраля 2022 г.
Образец цитирования:
Igor Khavkine, “Explicit Triangular Decoupling of the Separated Lichnerowicz Tensor Wave Equation on Schwarzschild into Scalar Regge–Wheeler Equations”, SIGMA, 18 (2022), 011, 57 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1806 https://www.mathnet.ru/rus/sigma/v18/p11
|
|