Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2022, том 18, 010, 30 стр.
DOI: https://doi.org/10.3842/SIGMA.2022.010
(Mi sigma1805)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Relationships Between Hyperelliptic Functions of Genus $2$ and Elliptic Functions

Takanori Ayanoa, Victor M. Buchstaberb

a Osaka City University, Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
b Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Street, Moscow, 119991, Russia
Список литературы:
Аннотация: The article is devoted to the classical problems about the relationships between elliptic functions and hyperelliptic functions of genus $2$. It contains new results, as well as a derivation from them of well-known results on these issues. Our research was motivated by applications to the theory of equations and dynamical systems integrable in hyperelliptic functions of genus $2$. We consider a hyperelliptic curve $V$ of genus $2$ which admits a morphism of degree $2$ to an elliptic curve. Then there exist two elliptic curves $E_i$, $i=1,2$, and morphisms of degree $2$ from $V$ to $E_i$. We construct hyperelliptic functions associated with $V$ from the Weierstrass elliptic functions associated with $E_i$ and describe them in terms of the fundamental hyperelliptic functions defined by the logarithmic derivatives of the two-dimensional sigma functions. We show that the restrictions of hyperelliptic functions associated with $V$ to the appropriate subspaces in $\mathbb{C}^2$ are elliptic functions and describe them in terms of the Weierstrass elliptic functions associated with $E_i$. Further, we express the hyperelliptic functions associated with $V$ on $\mathbb{C}^2$ in terms of the Weierstrass elliptic functions associated with $E_i$. We derive these results by describing the homomorphisms between the Jacobian varieties of the curves $V$ and $E_i$ induced by the morphisms from $V$ to $E_i$ explicitly.
Ключевые слова: hyperelliptic function, elliptic function, sigma function, reduction of hyperelliptic functions, Jacobian variety of an algebraic curve.
Финансовая поддержка Номер гранта
Japan Society for the Promotion of Science JP21K03296
Osaka City University Advanced Mathematical Institute JPMXP0619217849
The work of Takanori Ayano was supported by JSPS KAKENHI Grant Number JP21K03296 and was partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).
Поступила: 15 июня 2021 г.; в окончательном варианте 20 января 2022 г.; опубликована 1 февраля 2022 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Takanori Ayano, Victor M. Buchstaber, “Relationships Between Hyperelliptic Functions of Genus $2$ and Elliptic Functions”, SIGMA, 18 (2022), 010, 30 pp.
Цитирование в формате AMSBIB
\RBibitem{AyaBuc22}
\by Takanori~Ayano, Victor~M.~Buchstaber
\paper Relationships Between Hyperelliptic Functions of Genus~$2$ and Elliptic Functions
\jour SIGMA
\yr 2022
\vol 18
\papernumber 010
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma1805}
\crossref{https://doi.org/10.3842/SIGMA.2022.010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4373291}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000753314000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125168163}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1805
  • https://www.mathnet.ru/rus/sigma/v18/p10
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024