|
Simplified Forms of the Transition Probabilities of the Two-Species ASEP with Some Initial Orders of Particles
Eunghyun Lee, Temirlan Raimbekov Department of Mathematics, Nazarbayev University, Nur-sultan, Kazakhstan
Аннотация:
It has been known that the transition probability of the single species ASEP with $N$ particles is expressed as a sum of $N!$ $N$-fold contour integrals which are related to permutations in the symmetric group $S_N$. On other hand, the transition probabilities of the multi-species ASEP, in general, may be expressed as a sum of much more terms than $N!$. In this paper, we show that if the initial order of species is given by $2\cdots 21$, $12\cdots 2$, $1\cdots 12$ or $21\cdots 1$, then the transition probabilities can be expressed as a sum of at most $N!$ contour integrals, and provide their formulas explicitly.
Ключевые слова:
multi-species ASEP, transition probability, Bethe ansatz, symmetric group.
Поступила: 15 апреля 2021 г.; в окончательном варианте 24 января 2022 г.; опубликована 29 января 2022 г.
Образец цитирования:
Eunghyun Lee, Temirlan Raimbekov, “Simplified Forms of the Transition Probabilities of the Two-Species ASEP with Some Initial Orders of Particles”, SIGMA, 18 (2022), 008, 24 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1803 https://www.mathnet.ru/rus/sigma/v18/p8
|
|