|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics
Eric J. Papab, Daniël Boera, Holger Waalkensb a Van Swinderen Institute, University of Groningen, 9747 AG Groningen, The Netherlands
b Bernoulli Institute, University of Groningen,
P.O. Box 407, 9700 AK Groningen, The Netherlands
Аннотация:
We present a formal geometric framework for the study of adiabatic quantum mechanics for arbitrary finite-dimensional non-degenerate Hamiltonians. This framework generalizes earlier holonomy interpretations of the geometric phase to non-cyclic states appearing for non-Hermitian Hamiltonians. We start with an investigation of the space of non-degenerate operators on a finite-dimensional state space. We then show how the energy bands of a Hamiltonian family form a covering space. Likewise, we show that the eigenrays form a bundle, a generalization of a principal bundle, which admits a natural connection yielding the (generalized) geometric phase. This bundle provides in addition a natural generalization of the quantum geometric tensor and derived tensors, and we show how it can incorporate the non-geometric dynamical phase as well. We finish by demonstrating how the bundle can be recast as a principal bundle, so that both the geometric phases and the permutations of eigenstates can be expressed simultaneously by means of standard holonomy theory.
Ключевые слова:
adiabatic quantum mechanics, geometric phase, exceptional point, quantum geometric tensor.
Поступила: 23 июля 2021 г.; в окончательном варианте 28 декабря 2021 г.; опубликована 13 января 2022 г.
Образец цитирования:
Eric J. Pap, Daniël Boer, Holger Waalkens, “A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics”, SIGMA, 18 (2022), 003, 42 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1798 https://www.mathnet.ru/rus/sigma/v18/p3
|
Статистика просмотров: |
Страница аннотации: | 84 | PDF полного текста: | 32 | Список литературы: | 14 |
|