|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Boundary One-Point Function of the Rational Six-Vertex Model with Partial Domain Wall Boundary Conditions: Explicit Formulas and Scaling Properties
Mikhail D. Minin, Andrei G. Pronko Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
Аннотация:
We consider the six-vertex model with the rational weights on an $s\times N$ square lattice, $s\leq N$, with partial domain wall boundary conditions. We study the one-point function at the boundary where the free boundary conditions are imposed. For a finite lattice, it can be computed by the quantum inverse scattering method in terms of determinants. In the large $N$ limit, the result boils down to an explicit terminating series in the parameter of the weights. Using the saddle-point method for an equivalent integral representation, we show that as $s$ next tends to infinity, the one-point function demonstrates a step-wise behavior; at the vicinity of the step it scales as the error function. We also show that the asymptotic expansion of the one-point function can be computed from a second-order ordinary differential equation.
Ключевые слова:
lattice models, domain wall boundary conditions, phase separation, correlation functions, Yang–Baxter algebra.
Поступила: 16 августа 2021 г.; в окончательном варианте 18 декабря 2021 г.; опубликована 25 декабря 2021 г.
Образец цитирования:
Mikhail D. Minin, Andrei G. Pronko, “Boundary One-Point Function of the Rational Six-Vertex Model with Partial Domain Wall Boundary Conditions: Explicit Formulas and Scaling Properties”, SIGMA, 17 (2021), 111, 29 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1793 https://www.mathnet.ru/rus/sigma/v17/p111
|
|