|
Quot Schemes for Kleinian Orbifolds
Alastair Crawa, Søren Gammelgaardb, Ádám Gyengec, Balázs Szendrőib a Department of Mathematical Sciences, University of Bath,
Claverton Down, Bath BA2 7AY, UK
b Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
c Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, 1053, Budapest, Hungary
Аннотация:
For a finite subgroup $\Gamma\subset {\mathrm{SL}}(2,\mathbb{C})$, we identify fine moduli spaces of certain cornered quiver algebras, defined in earlier work, with orbifold Quot schemes for the Kleinian orbifold $\big[\mathbb{C}^2\!/\Gamma\big]$. We also describe the reduced schemes underlying these Quot schemes as Nakajima quiver varieties for the framed McKay quiver of $\Gamma$, taken at specific non-generic stability parameters. These schemes are therefore irreducible, normal and admit symplectic resolutions. Our results generalise our work [Algebr. Geom. 8 (2021), 680–704] on the Hilbert scheme of points on $\mathbb{C}^2/\Gamma$; we present arguments that completely bypass the ADE classification.
Ключевые слова:
Quot scheme, quiver variety, Kleinian orbifold, preprojective algebra, cornering.
Поступила: 29 июня 2021 г.; в окончательном варианте 3 ноября 2021 г.; опубликована 10 ноября 2021 г.
Образец цитирования:
Alastair Craw, Søren Gammelgaard, Ádám Gyenge, Balázs Szendrői, “Quot Schemes for Kleinian Orbifolds”, SIGMA, 17 (2021), 099, 21 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1781 https://www.mathnet.ru/rus/sigma/v17/p99
|
|