|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Algebraic Structures on Typed Decorated Rooted Trees
Loїc Foissy Univ. Littoral Côte d'Opale, UR 2597LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62100 Calais, France
Аннотация:
Typed decorated trees are used by Bruned, Hairer and Zambotti to give a description of a renormalisation process on stochastic PDEs. We here study the algebraic structures on these objects: multiple pre-Lie algebras and related operads (generalizing a result by Chapoton and Livernet), noncommutative and cocommutative Hopf algebras (generalizing Grossman and Larson's construction), commutative and noncocommutative Hopf algebras (generalizing Connes and Kreimer's construction), bialgebras in cointeraction (generalizing Calaque, Ebrahimi-Fard and Manchon's result). We also define families of morphisms and in particular we prove that any Connes–Kreimer Hopf algebra of typed and decorated trees is isomorphic to a Connes–Kreimer Hopf algebra of non-typed and decorated trees (the set of decorations of vertices being bigger), through a contraction process, and finally obtain the Bruned–Hairer–Zambotti construction as a subquotient.
Ключевые слова:
typed tree, combinatorial Hopf algebras, pre-Lie algebras, operads.
Поступила: 2 февраля 2021 г.; в окончательном варианте 12 сентября 2021 г.; опубликована 21 сентября 2021 г.
Образец цитирования:
Loïc Foissy, “Algebraic Structures on Typed Decorated Rooted Trees”, SIGMA, 17 (2021), 086, 28 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1768 https://www.mathnet.ru/rus/sigma/v17/p86
|
Статистика просмотров: |
Страница аннотации: | 56 | PDF полного текста: | 23 | Список литературы: | 15 |
|