|
Resolvent Trace Formula and Determinants of $\boldsymbol{n}$ Laplacians on Orbifold Riemann Surfaces
Lee-Peng Teo Department of Mathematics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
Аннотация:
For $n$ a nonnegative integer, we consider the $n$-Laplacian $\Delta_n$ acting on the space of $n$-differentials on a confinite Riemann surface $X$ which has ramification points. The trace formula for the resolvent kernel is developed along the line à la Selberg. Using the trace formula, we compute the regularized determinant of $\Delta_n+s(s+2n-1)$, from which we deduce the regularized determinant of $\Delta_n$, denoted by $\det\!'\Delta_n$. Taking into account the contribution from the absolutely continuous spectrum, $\det\!'\Delta_n$ is equal to a constant $\mathcal{C}_n$ times $Z(n)$ when $n\geq 2$. Here $Z(s)$ is the Selberg zeta function of $X$. When $n=0$ or $n=1$, $Z(n)$ is replaced by the leading coefficient of the Taylor expansion of $Z(s)$ around $s=0$ and $s=1$ respectively. The constants $\mathcal{C}_n$ are calculated explicitly. They depend on the genus, the number of cusps, as well as the ramification indices, but is independent of the moduli parameters.
Ключевые слова:
determinant of Laplacian, $n$-differentials, cocompact Riemann surfaces, Selberg trace formula.
Поступила: 7 апреля 2021 г.; в окончательном варианте 5 сентября 2021 г.; опубликована 13 сентября 2021 г.
Образец цитирования:
Lee-Peng Teo, “Resolvent Trace Formula and Determinants of $\boldsymbol{n}$ Laplacians on Orbifold Riemann Surfaces”, SIGMA, 17 (2021), 083, 40 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1765 https://www.mathnet.ru/rus/sigma/v17/p83
|
Статистика просмотров: |
Страница аннотации: | 60 | PDF полного текста: | 18 | Список литературы: | 13 |
|