|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
An Expansion Formula for Decorated Super-Teichmüller Spaces
Gregg Musiker, Nicholas Ovenhouse, Sylvester W. Zhang School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Аннотация:
Motivated by the definition of super-Teichmüller spaces, and Penner–Zeitlin's recent extension of this definition to decorated super-Teichmüller space, as examples of super Riemann surfaces, we use the super Ptolemy relations to obtain formulas for super $\lambda$-lengths associated to arcs in a bordered surface. In the special case of a disk, we are able to give combinatorial expansion formulas for the super $\lambda$-lengths associated to diagonals of a polygon in the spirit of Ralf Schiffler's $T$-path formulas for type $A$ cluster algebras. We further connect our formulas to the super-friezes of Morier-Genoud, Ovsienko, and Tabachnikov, and obtain partial progress towards defining super cluster algebras of type $A_n$. In particular, following Penner–Zeitlin, we are able to get formulas (up to signs) for the $\mu$-invariants associated to triangles in a triangulated polygon, and explain how these provide a step towards understanding odd variables of a super cluster algebra.
Ключевые слова:
cluster algebras, Laurent polynomials, decorated Teichmüller spaces, supersymmetry.
Поступила: 31 марта 2021 г.; в окончательном варианте 27 августа 2021 г.; опубликована 1 сентября 2021 г.
Образец цитирования:
Gregg Musiker, Nicholas Ovenhouse, Sylvester W. Zhang, “An Expansion Formula for Decorated Super-Teichmüller Spaces”, SIGMA, 17 (2021), 080, 34 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1762 https://www.mathnet.ru/rus/sigma/v17/p80
|
|