Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2021, том 17, 078, 22 стр.
DOI: https://doi.org/10.3842/SIGMA.2021.078
(Mi sigma1760)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Minimal Kinematics: An All $k$ and $n$ Peek into $\mathrm{Trop}^+\mathrm{G}(k,n)$

Freddy Cachazoa, Nick Earlyb

a Perimeter Institute for Theoretical Physics, 31 Caroline Str., Waterloo, Ontario N2L 2Y5, Canada
b The Institute for Advanced Study, Princeton, NJ, USA
Список литературы:
Аннотация: In this note we present a formula for the Cachazo–Early–Guevara–Mizera (CEGM) generalized biadjoint amplitudes for all $k$ and $n$ on what we call the minimal kinematics. We prove that on the minimal kinematics, the scattering equations on the configuration space of $n$ points on $\mathbb{CP}^{k-1}$ has a unique solution, and that this solution is in the image of a Veronese embedding. The minimal kinematics is an all $k$ generalization of the one recently introduced by Early for $k=2$ and uses a choice of cyclic ordering. We conjecture an explicit formula for $m_n^{(k)}(\mathbb{I},\mathbb{I})$ which we have checked analytically through $n=10$ for all $k$. The answer is a simple rational function which has only simple poles; the poles have the combinatorial structure of the circulant graph ${\rm C}_n^{(1,2,\dots, k-2)}$. Generalized biadjoint amplitudes can also be evaluated using the positive tropical Grassmannian ${\rm Tr}^+{\rm G}(k,n)$ in terms of generalized planar Feynman diagrams. We find perfect agreement between both definitions for all cases where the latter is known in the literature. In particular, this gives the first strong consistency check on the $90\,608$ planar arrays for ${\rm Tr}^+{\rm G}(4,8)$ recently computed by Cachazo, Guevara, Umbert and Zhang. We also introduce another class of special kinematics called planar-basis kinematics which generalizes the one introduced by Cachazo, He and Yuan for $k=2$ and uses the planar basis recently introduced by Early for all $k$. Based on numerical computations through $n=8$ for all $k$, we conjecture that on the planar-basis kinematics $m_n^{(k)}(\mathbb{I},\mathbb{I})$ evaluates to the multidimensional Catalan numbers, suggesting the possibility of novel combinatorial interpretations. For $k=2$ these are the standard Catalan numbers.
Ключевые слова: scattering amplitudes, tropical Grassmannian, generalized biadjoint scalar.
Финансовая поддержка
This research was supported in part by a grant from the Gluskin Sheff/Onex Freeman Dyson Chair in Theoretical Physics and by Perimeter Institute. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities.
Поступила: 14 декабря 2020 г.; в окончательном варианте 8 августа 2021 г.; опубликована 25 августа 2021 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 14M15, 05E99, 14T99
Язык публикации: английский
Образец цитирования: Freddy Cachazo, Nick Early, “Minimal Kinematics: An All $k$ and $n$ Peek into $\mathrm{Trop}^+\mathrm{G}(k,n)$”, SIGMA, 17 (2021), 078, 22 pp.
Цитирование в формате AMSBIB
\RBibitem{CacEar21}
\by Freddy~Cachazo, Nick~Early
\paper Minimal Kinematics: An All $k$ and $n$ Peek into $\mathrm{Trop}^+\mathrm{G}(k,n)$
\jour SIGMA
\yr 2021
\vol 17
\papernumber 078
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma1760}
\crossref{https://doi.org/10.3842/SIGMA.2021.078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000689021400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114031281}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1760
  • https://www.mathnet.ru/rus/sigma/v17/p78
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024