|
Extrinsic Geometry and Linear Differential Equations
Boris Doubrova, Yoshinori Machidab, Tohru Morimotocd a Faculty of Mathematics and Mechanics, Belarusian State University,
Nezavisimosti ave. 4, Minsk 220030, Belarus
b Shizuoka University, Shizuoka 422-8529, Japan
c Institut Kiyoshi Oka de Mathématiques, Nara Women's University, Nara 630-8506, Japan
d Seki Kowa Institute of Mathematics, Yokkaichi University, Yokkaichi 512-8045, Japan
Аннотация:
We give a unified method for the general equivalence problem of extrinsic geometry, on the basis of our formulation of a general extrinsic geometry as that of an osculating map $\varphi\colon (M,\mathfrak f) \to L/L^0 \subset \operatorname{Flag}(V,\phi)$ from a filtered manifold $(M,\mathfrak f)$ to a homogeneous space $L/L^0$ in a flag variety $\operatorname{Flag}(V,\phi)$, where $L$ is a finite-dimensional Lie group and $L^0$ its closed subgroup. We establish an algorithm to obtain the complete systems of invariants for the osculating maps which satisfy the reasonable regularity condition of constant symbol of type $(\mathfrak g_-, \operatorname{gr} V, L)$. We show the categorical isomorphism between the extrinsic geometries in flag varieties and the (weighted) involutive systems of linear differential equations of finite type. Therefore we also obtain a complete system of invariants for a general involutive systems of linear differential equations of finite type and of constant symbol. The invariants of an osculating map (or an involutive system of linear differential equations) are proved to be controlled by the cohomology group $H^1_+(\mathfrak g_-, \mathfrak l / \bar{\mathfrak g})$ which is defined algebraically from the symbol of the osculating map (resp. involutive system), and which, in many cases (in particular, if the symbol is associated with a simple Lie algebra and its irreducible representation), can be computed by the algebraic harmonic theory, and the vanishing of which gives rigidity theorems in various concrete geometries. We also extend the theory to the case when $L$ is infinite dimensional.
Ключевые слова:
extrinsic geometry, filtered manifold, flag variety, osculating map, involutive systems of linear differential equations, extrinsic Cartan connection, rigidity of rational homogeneous varieties.
Поступила: 4 июня 2020 г.; в окончательном варианте 4 июня 2021 г.; опубликована 17 июня 2021 г.
Образец цитирования:
Boris Doubrov, Yoshinori Machida, Tohru Morimoto, “Extrinsic Geometry and Linear Differential Equations”, SIGMA, 17 (2021), 061, 60 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1743 https://www.mathnet.ru/rus/sigma/v17/p61
|
Статистика просмотров: |
Страница аннотации: | 96 | PDF полного текста: | 44 | Список литературы: | 21 |
|