|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}\nu}(z)$ with Respect to Order
Yuri Krynytskyi, Andrij Rovenchak Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine
Аннотация:
The paper presents the derivation of the asymptotic behavior of $\nu$-zeros of the modified Bessel function of imaginary order $K_{{\rm i}\nu}(z)$. This derivation is based on the quasiclassical treatment of the exponential potential on the positive half axis. The asymptotic expression for the $\nu$-zeros (zeros with respect to order) contains the Lambert $W$ function, which is readily available in most computer algebra systems and numerical software packages. The use of this function provides much higher accuracy of the estimation comparing to known relations containing the logarithm, which is just the leading term of $W(x)$ at large $x$. Our result ensures accuracies sufficient for practical applications.
Ключевые слова:
quasiclassical approximation, exponential potential, $\nu$-zeros, modified Bessel functions of the second kind, imaginary order, Lambert $W$ function.
Поступила: 15 мая 2021 г.; в окончательном варианте 1 июня 2021 г.; опубликована 10 июня 2021 г.
Образец цитирования:
Yuri Krynytskyi, Andrij Rovenchak, “Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}\nu}(z)$ with Respect to Order”, SIGMA, 17 (2021), 057, 7 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1740 https://www.mathnet.ru/rus/sigma/v17/p57
|
Статистика просмотров: |
Страница аннотации: | 66 | PDF полного текста: | 26 | Список литературы: | 15 |
|