|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
From Heun Class Equations to Painlevé Equations
Jan Derezińskia, Artur Ishkhanyanbc, Adam Latosińskia a Department of Mathematical Methods in Physics, Faculty of Physics,
University of Warsaw, Pasteura 5, 02-093, Warszawa, Poland
b Russian-Armenian University, 0051 Yerevan, Armenia
c Institute for Physical Research of NAS of Armenia, 0203 Ashtarak, Armenia
Аннотация:
In the first part of our paper we discuss linear 2nd order differential equations in the complex domain, especially Heun class equations, that is, the Heun equation and its confluent cases. The second part of our paper is devoted to Painlevé I–VI equations. Our philosophy is to treat these families of equations in a unified way. This philosophy works especially well for Heun class equations. We discuss its classification into 5 supertypes, subdivided into 10 types (not counting trivial cases). We also introduce in a unified way deformed Heun class equations, which contain an additional nonlogarithmic singularity. We show that there is a direct relationship between deformed Heun class equations and all Painlevé equations. In particular, Painlevé equations can be also divided into 5 supertypes, and subdivided into 10 types. This relationship is not so easy to describe in a completely unified way, because the choice of the “time variable” may depend on the type. We describe unified treatments for several possible “time variables”.
Ключевые слова:
linear ordinary differential equation, Heun class equations, isomonodromy deformations, Painlevé equations.
Поступила: 25 августа 2020 г.; в окончательном варианте 25 мая 2021 г.; опубликована 7 июня 2021 г.
Образец цитирования:
Jan Dereziński, Artur Ishkhanyan, Adam Latosiński, “From Heun Class Equations to Painlevé Equations”, SIGMA, 17 (2021), 056, 59 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1739 https://www.mathnet.ru/rus/sigma/v17/p56
|
Статистика просмотров: |
Страница аннотации: | 59 | PDF полного текста: | 21 | Список литературы: | 15 |
|