Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2021, том 17, 036, 53 стр.
DOI: https://doi.org/10.3842/SIGMA.2021.036
(Mi sigma1719)
 

Interplay between Opers, Quantum Curves, WKB Analysis, and Higgs Bundles

Olivia Dumitrescuab, Motohico Mulasecd

a Department of Mathematics, University of North Carolina at Chapel Hill, 340 Phillips Hall, CB 3250, Chapel Hill, NC 27599–3250 USA
b Simion Stoilow Institute of Mathematics, Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania
c Department of Mathematics, University of California, Davis, CA 95616–8633, USA
d Kavli Institute for Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Japan
Список литературы:
Аннотация: Quantum curves were introduced in the physics literature. We develop a mathematical framework for the case associated with Hitchin spectral curves. In this context, a quantum curve is a Rees $\mathcal{D}$-module on a smooth projective algebraic curve, whose semi-classical limit produces the Hitchin spectral curve of a Higgs bundle. We give a method of quantization of Hitchin spectral curves by concretely constructing one-parameter deformation families of opers. We propose a variant of the topological recursion of Eynard–Orantin and Mirzakhani for the context of singular Hitchin spectral curves. We show that a PDE version of topological recursion provides all-order WKB analysis for the Rees $\mathcal{D}$-modules, defined as the quantization of Hitchin spectral curves associated with meromorphic ${\rm SL}(2,\mathbb{C})$-Higgs bundles. Topological recursion can be considered as a process of quantization of Hitchin spectral curves. We prove that these two quantizations, one via the construction of families of opers, and the other via the PDE recursion of topological type, agree for holomorphic and meromorphic ${\rm SL}(2,\mathbb{C})$-Higgs bundles. Classical differential equations such as the Airy differential equation provides a typical example. Through these classical examples, we see that quantum curves relate Higgs bundles, opers, a conjecture of Gaiotto, and quantum invariants, such as Gromov–Witten invariants.
Ключевые слова: quantum curve, Hitchin spectral curve, Higgs field, Rees $\mathcal{D}$-module, opers, non-Abelian Hodge correspondence, mirror symmetry, Airy function, quantum invariants, WKB approximation, topological recursion.
Финансовая поддержка Номер гранта
Institut des Hautes Etudes Scientifiques
National Science Foundation DMS-1104734
DMS-1309298
DMS-1619760
DMS-1642515
DMS-1107452
1107263
1107367
Deutsche Forschungsgemeinschaft GRK 1463
Max-Planck-Institut für Mathematik
During the preparation of this work, the research of O.D. was supported by GRK 1463 Analysis, Geometry, and String Theory at the Leibniz Universität Hannover, and a grant from MPIM-Bonn. The research of M.M. was supported by IHÉS, MPIM-Bonn, NSF grants DMS-1104734, DMS-1309298, DMS-1619760, DMS-1642515, and NSF-RNMS: Geometric Structures And Representation Varieties (GEAR Network, DMS-1107452, 1107263, 1107367).
Поступила: 31 декабря 2019 г.; в окончательном варианте 12 марта 2021 г.; опубликована 9 апреля 2021 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Olivia Dumitrescu, Motohico Mulase, “Interplay between Opers, Quantum Curves, WKB Analysis, and Higgs Bundles”, SIGMA, 17 (2021), 036, 53 pp.
Цитирование в формате AMSBIB
\RBibitem{DumMul21}
\by Olivia~Dumitrescu, Motohico~Mulase
\paper Interplay between Opers, Quantum Curves, WKB Analysis, and Higgs Bundles
\jour SIGMA
\yr 2021
\vol 17
\papernumber 036
\totalpages 53
\mathnet{http://mi.mathnet.ru/sigma1719}
\crossref{https://doi.org/10.3842/SIGMA.2021.036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641902400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104620664}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1719
  • https://www.mathnet.ru/rus/sigma/v17/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:88
    PDF полного текста:31
    Список литературы:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024