|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Mixed vs Stable Anti-Yetter–Drinfeld Contramodules
Ilya Shapiro Department of Mathematics and Statistics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
Аннотация:
We examine the cyclic homology of the monoidal category of modules over a finite dimensional Hopf algebra, motivated by the need to demonstrate that there is a difference between the recently introduced mixed anti-Yetter–Drinfeld contramodules and the usual stable anti-Yetter–Drinfeld contramodules. Namely, we show that Sweedler's Hopf algebra provides an example where mixed complexes in the category of stable anti-Yetter–Drinfeld contramodules (previously studied) are not equivalent, as differential graded categories to the category of mixed anti-Yetter–Drinfeld contramodules (recently introduced).
Ключевые слова:
Hopf algebras, homological algebra, Taft algebras.
Поступила: 9 ноября 2020 г.; в окончательном варианте 4 марта 2021 г.; опубликована 17 марта 2021 г.
Образец цитирования:
Ilya Shapiro, “Mixed vs Stable Anti-Yetter–Drinfeld Contramodules”, SIGMA, 17 (2021), 026, 10 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1709 https://www.mathnet.ru/rus/sigma/v17/p26
|
|