Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2021, том 17, 012, 51 стр.
DOI: https://doi.org/10.3842/SIGMA.2021.012
(Mi sigma1695)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Topological $\mathrm{T}$-Duality for Twisted Tori

Paolo Aschieriabc, Richard J. Szaboadecf

a Arnold–Regge Centre, Via P. Giuria 1, 10125 Torino, Italy
b Istituto Nazionale di Fisica Nucleare, Torino, Via P. Giuria 1, 10125 Torino, Italy
c Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
d Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, UK
e Higgs Centre for Theoretical Physics, Edinburgh, UK
f Maxwell Institute for Mathematical Sciences, Edinburgh, UK
Список литературы:
Аннотация: We apply the $C^*$-algebraic formalism of topological $\mathrm{T}$-duality due to Mathai and Rosenberg to a broad class of topological spaces that include the torus bundles appearing in string theory compactifications with duality twists, such as nilmanifolds, as well as many other examples. We develop a simple procedure in this setting for constructing the $\mathrm{T}$-duals starting from a commutative $C^*$-algebra with an action of ${\mathbb R}^n$. We treat the general class of almost abelian solvmanifolds in arbitrary dimension in detail, where we provide necessary and sufficient criteria for the existence of classical $\mathrm{T}$-duals in terms of purely group theoretic data, and compute them explicitly as continuous-trace algebras with non-trivial Dixmier–Douady classes. We prove that any such solvmanifold has a topological $\mathrm{T}$-dual given by a $C^*$-algebra bundle of noncommutative tori, which we also compute explicitly. The monodromy of the original torus bundle becomes a Morita equivalence among the fiber algebras, so that these $C^*$-algebras rigorously describe the $\mathrm{T}$-folds from non-geometric string theory.
Ключевые слова: noncommutative $C^*$-algebraic $\mathrm{T}$-duality, nongeometric backgrounds, Mostow fibration of almost abelian solvmanifolds, $C^*$-algebra bundles of noncommutative tori.
Финансовая поддержка Номер гранта
Instituto Nazionale di Fisica Nucleare
Istituto Nazionale di Alta Matematica "Francesco Severi"
UK Science and Technology Facilities Council ST/P000363/1
This research was supported by funds from Università del Piemonte Orientale (UPO). P.A. acknowledges partial support from INFN, CSN4, and Iniziativa Specifica GSS. P.A. is affiliated to INdAM-GNFM. R.J.S. acknowledges a Visiting Professorship through UPO Internationalization Funds. The work of R.J.S. was supported in part by the Consolidated Grant ST/P000363/1 from the UK Science and Technology Facilities Council.
Поступила: 30 июня 2020 г.; в окончательном варианте 22 января 2021 г.; опубликована 5 февраля 2021 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 46L55, 81T30, 16D90
Язык публикации: английский
Образец цитирования: Paolo Aschieri, Richard J. Szabo, “Topological $\mathrm{T}$-Duality for Twisted Tori”, SIGMA, 17 (2021), 012, 51 pp.
Цитирование в формате AMSBIB
\RBibitem{AscSza21}
\by Paolo~Aschieri, Richard~J.~Szabo
\paper Topological $\mathrm{T}$-Duality for Twisted Tori
\jour SIGMA
\yr 2021
\vol 17
\papernumber 012
\totalpages 51
\mathnet{http://mi.mathnet.ru/sigma1695}
\crossref{https://doi.org/10.3842/SIGMA.2021.012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000619814400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101128710}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1695
  • https://www.mathnet.ru/rus/sigma/v17/p12
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024