Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2021, том 17, 004, 22 стр.
DOI: https://doi.org/10.3842/SIGMA.2021.004
(Mi sigma1686)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

The Arithmetic Geometry of AdS$_2$ and its Continuum Limit

Minos Axenidesa, Emmanuel Floratosab, Stam Nicolisc

a Institute of Nuclear and Particle Physics, NCSR “Demokritos”, Aghia Paraskevi, GR–15310, Greece
b Physics Department, University of Athens, Zografou University Campus, Athens, GR-15771, Greece
c Institut Denis Poisson, Université de Tours, Université d'Orléans, CNRS (UMR7013), Parc Grandmont, 37200 Tours, France
Список литературы:
Аннотация: According to the 't Hooft–Susskind holography, the black hole entropy, $S_\mathrm{BH}$, is carried by the chaotic microscopic degrees of freedom, which live in the near horizon region and have a Hilbert space of states of finite dimension $d=\exp(S_\mathrm{BH})$. In previous work we have proposed that the near horizon geometry, when the microscopic degrees of freedom can be resolved, can be described by the AdS$_2[\mathbb{Z}_N]$ discrete, finite and random geometry, where $N\propto S_\mathrm{BH}$. It has been constructed by purely arithmetic and group theoretical methods and was studied as a toy model for describing the dynamics of single particle probes of the near horizon region of 4d extremal black holes, as well as to explain, in a direct way, the finiteness of the entropy, $S_\mathrm{BH}$. What has been left as an open problem is how the smooth AdS$_2$ geometry can be recovered, in the limit when $N\to\infty$. In the present article we solve this problem, by showing that the discrete and finite AdS$_2[\mathbb{Z}_N]$ geometry can be embedded in a family of finite geometries, AdS$_2^M[\mathbb{Z}_N]$, where $M$ is another integer. This family can be constructed by an appropriate toroidal compactification and discretization of the ambient $(2+1)$-dimensional Minkowski space-time. In this construction $N$ and $M$ can be understood as “infrared” and “ultraviolet” cutoffs respectively. The above construction enables us to obtain the continuum limit of the AdS$_2^M[\mathbb{Z}_N]$ discrete and finite geometry, by taking both $N$ and $M$ to infinity in a specific correlated way, following a reverse process: Firstly, we show how it is possible to recover the continuous, toroidally compactified, AdS$_2[\mathbb{Z}_N]$ geometry by removing the ultraviolet cutoff; secondly, we show how it is possible to remove the infrared cutoff in a specific decompactification limit, while keeping the radius of AdS$_2$ finite. It is in this way that we recover the standard non-compact AdS$_2$ continuum space-time. This method can be applied directly to higher-dimensional AdS spacetimes.
Ключевые слова: arithmetic geometry of AdS$_2$, continuum limit of finite geometries, Fibonacci sequences.
Поступила: 2 апреля 2020 г.; в окончательном варианте 2 января 2021 г.; опубликована 9 января 2021 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 14L35, 11D45, 83C57
Язык публикации: английский
Образец цитирования: Minos Axenides, Emmanuel Floratos, Stam Nicolis, “The Arithmetic Geometry of AdS$_2$ and its Continuum Limit”, SIGMA, 17 (2021), 004, 22 pp.
Цитирование в формате AMSBIB
\RBibitem{AxeFloNic21}
\by Minos~Axenides, Emmanuel~Floratos, Stam~Nicolis
\paper The Arithmetic Geometry of AdS$_2$ and its Continuum Limit
\jour SIGMA
\yr 2021
\vol 17
\papernumber 004
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma1686}
\crossref{https://doi.org/10.3842/SIGMA.2021.004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607120900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104712364}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1686
  • https://www.mathnet.ru/rus/sigma/v17/p4
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:83
    PDF полного текста:22
    Список литературы:15
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024