|
The Expansion of Wronskian Hermite Polynomials in the Hermite Basis
Codruţ Grosua, Corina Grosub a Google Zürich, Brandschenkestrasse 110, Zürich, Switzerland
b Department of Applied Mathematics, Politehnica University of Bucharest,
Splaiul Independentei 313, Bucharest, Romania
Аннотация:
We express Wronskian Hermite polynomials in the Hermite basis and obtain an explicit formula for the coefficients. From this we deduce an upper bound for the modulus of the roots in the case of partitions of length 2. We also derive a general upper bound for the modulus of the real and purely imaginary roots. These bounds are very useful in the study of irreducibility of Wronskian Hermite polynomials. Additionally, we generalize some of our results to a larger class of polynomials.
Ключевые слова:
Wronskian, Hermite polynomials, Schrödinger operator.
Поступила: 8 июля 2020 г.; в окончательном варианте 4 января 2021 г.; опубликована 9 января 2021 г.
Образец цитирования:
Codruţ Grosu, Corina Grosu, “The Expansion of Wronskian Hermite Polynomials in the Hermite Basis”, SIGMA, 17 (2021), 003, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1685 https://www.mathnet.ru/rus/sigma/v17/p3
|
|