|
Representations of Quantum Affine Algebras in their $R$-Matrix Realization
Naihuan Jinga, Ming Liub, Alexander Molevc a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b School of Mathematics, South China University of Technology, Guangzhou, 510640, China
c School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Аннотация:
We use the isomorphisms between the $R$-matrix and Drinfeld presentations of the quantum affine algebras in types $B$, $C$ and $D$ produced in our previous work to describe finite-dimensional irreducible representations in the $R$-matrix realization.
We also review the isomorphisms for the Yangians of these types and use Gauss decomposition to establish an equivalence of the descriptions of the representations in the $R$-matrix and Drinfeld presentations of the Yangians.
Ключевые слова:
$R$-matrix presentation, Drinfeld polynomials, highest weight representation, Gauss decomposition.
Поступила: 19 августа 2020 г.; в окончательном варианте 25 декабря 2020 г.; опубликована 28 декабря 2020 г.
Образец цитирования:
Naihuan Jing, Ming Liu, Alexander Molev, “Representations of Quantum Affine Algebras in their $R$-Matrix Realization”, SIGMA, 16 (2020), 145, 25 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1681 https://www.mathnet.ru/rus/sigma/v16/p145
|
Статистика просмотров: |
Страница аннотации: | 75 | PDF полного текста: | 27 | Список литературы: | 22 |
|