|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Cyclic Sieving for Plane Partitions and Symmetry
Sam Hopkins School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Аннотация:
The cyclic sieving phenomenon of Reiner, Stanton, and White says that we can often count the fixed points of elements of a cyclic group acting on a combinatorial set by plugging roots of unity into a polynomial related to this set. One of the most impressive instances of the cyclic sieving phenomenon is a theorem of Rhoades asserting that the set of plane partitions in a rectangular box under the action of promotion exhibits cyclic sieving. In Rhoades's result the sieving polynomial is the size generating function for these plane partitions, which has a well-known product formula due to MacMahon. We extend Rhoades's result by also considering symmetries of plane partitions: specifically, complementation and transposition. The relevant polynomial here is the size generating function for symmetric plane partitions, whose product formula was conjectured by MacMahon and proved by Andrews and Macdonald. Finally, we explain how these symmetry results also apply to the rowmotion operator on plane partitions, which is closely related to promotion.
Ключевые слова:
plane partitions, cyclic sieving phenomena, promotion, rowmotion, canonical bases.
Поступила: 5 мая 2020 г.; в окончательном варианте 6 декабря 2020 г.; опубликована 9 декабря 2020 г.
Образец цитирования:
Sam Hopkins, “Cyclic Sieving for Plane Partitions and Symmetry”, SIGMA, 16 (2020), 130, 40 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1667 https://www.mathnet.ru/rus/sigma/v16/p130
|
Статистика просмотров: |
Страница аннотации: | 50 | PDF полного текста: | 20 | Список литературы: | 17 |
|