|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Basic Properties of Non-Stationary Ruijsenaars Functions
Edwin Langmanna, Masatoshi Noumibc, Junichi Shiraishid a Physics Department, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
b Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
c Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
d Graduate School of Mathematical Sciences, The University of Tokyo, Komaba,
Tokyo 153-8914, Japan
Аннотация:
For any variable number, a non-stationary Ruijsenaars function was recently introduced as a natural generalization of an explicitly known asymptotically free solution of the trigonometric Ruijsenaars model, and it was conjectured that this non-stationary Ruijsenaars function provides an explicit solution of the elliptic Ruijsenaars model. We present alternative series representations of the non-stationary Ruijsenaars functions, and we prove that these series converge. We also introduce novel difference operators called $\mathcal{T}$ which, as we prove in the trigonometric limit and conjecture in the general case, act diagonally on the non-stationary Ruijsenaars functions.
Ключевые слова:
elliptic integrable systems, elliptic hypergeometric functions, Ruijsenaars systems.
Поступила: 15 июня 2020 г.; в окончательном варианте 8 октября 2020 г.; опубликована 21 октября 2020 г.
Образец цитирования:
Edwin Langmann, Masatoshi Noumi, Junichi Shiraishi, “Basic Properties of Non-Stationary Ruijsenaars Functions”, SIGMA, 16 (2020), 105, 26 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1642 https://www.mathnet.ru/rus/sigma/v16/p105
|
|