|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
On the Unbounded Picture of $KK$-Theory
Jens Kaad Department of Mathematics and Computer Science, The University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
Аннотация:
In the founding paper on unbounded $KK$-theory it was established by Baaj and Julg that the bounded transform, which associates a class in $KK$-theory to any unbounded Kasparov module, is a surjective homomorphism (under a separability assumption). In this paper, we provide an equivalence relation on unbounded Kasparov modules and we thereby describe the kernel of the bounded transform. This allows us to introduce a notion of topological unbounded $KK$-theory, which becomes isomorphic to $KK$-theory via the bounded transform. The equivalence relation is formulated entirely at the level of unbounded Kasparov modules and consists of homotopies together with an extra degeneracy condition. Our degenerate unbounded Kasparov modules are called spectrally decomposable since they admit a decomposition into a part with positive spectrum and a part with negative spectrum.
Ключевые слова:
$KK$-theory, unbounded $KK$-theory, equivalence relations, bounded transform.
Поступила: 22 октября 2019 г.; в окончательном варианте 5 августа 2020 г.; опубликована 22 августа 2020 г.
Образец цитирования:
Jens Kaad, “On the Unbounded Picture of $KK$-Theory”, SIGMA, 16 (2020), 082, 21 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1619 https://www.mathnet.ru/rus/sigma/v16/p82
|
Статистика просмотров: |
Страница аннотации: | 79 | PDF полного текста: | 26 | Список литературы: | 15 |
|