|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Reddening Sequences for Banff Quivers and the Class $\mathcal{P}$
Eric Buchera, John Machacekb a Department of Mathematics, Xavier University, Cincinnati, Ohio 45207, USA
b Department of Mathematics and Statistics, York University,
Toronto, Ontario M3J 1P3, Canada
Аннотация:
We show that a reddening sequence exists for any quiver which is Banff. Our proof is combinatorial and relies on the triangular extension construction for quivers. The other facts needed are that the existence of a reddening sequence is mutation invariant and passes to induced subquivers. Banff quivers define locally acyclic cluster algebras which are known to coincide with their upper cluster algebras.
The existence of reddening sequences for these quivers is consistent with a conjectural relationship between the existence of a reddening sequence and a cluster algebra's equality with its upper cluster algebra.
Our result completes a verification of the conjecture for Banff quivers. We also prove that a certain subclass of quivers within the class $\mathcal{P}$ define locally acyclic cluster algebras.
Ключевые слова:
cluster algebras, quiver mutation, reddening sequences.
Поступила: 15 июня 2019 г.; в окончательном варианте 23 мая 2020 г.; опубликована 8 июня 2020 г.
Образец цитирования:
Eric Bucher, John Machacek, “Reddening Sequences for Banff Quivers and the Class $\mathcal{P}$”, SIGMA, 16 (2020), 049, 11 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1586 https://www.mathnet.ru/rus/sigma/v16/p49
|
|