|
Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)
Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$
Naihuan Jinga, Ming Liubc, Alexander Molevc a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b School of Mathematics, South China University of Technology, Guangzhou, 510640, China
c School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Аннотация:
Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277–300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.
Ключевые слова:
$R$-matrix presentation, Drinfeld new presentation, universal $R$-matrix, Gauss decomposition.
Поступила: 18 ноября 2019 г.; в окончательном варианте 10 мая 2020 г.; опубликована 21 мая 2020 г.
Образец цитирования:
Naihuan Jing, Ming Liu, Alexander Molev, “Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1580 https://www.mathnet.ru/rus/sigma/v16/p43
|
Статистика просмотров: |
Страница аннотации: | 82 | PDF полного текста: | 21 | Список литературы: | 15 |
|