|
An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$
Sarah Posta, Paul Terwilligerb a Department of Mathematics, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
b Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
Аннотация:
Let $\mathbb F$ denote a field, and pick a nonzero $q \in \mathbb F$ that is not a root of unity. Let $\mathbb Z_4=\mathbb Z/4 \mathbb Z$ denote the cyclic group of order 4. Define a unital associative ${\mathbb F}$-algebra $\square_q$ by generators $\lbrace x_i \rbrace_{i \in \mathbb Z_4}$ and relations
\begin{gather*}
\frac{q x_i x_{i+1}-q^{-1}x_{i+1}x_i}{q-q^{-1}} = 1,\qquad
x^3_i x_{i+2} - \lbrack 3 \rbrack_q x^2_i x_{i+2} x_i + \lbrack 3 \rbrack_q x_i x_{i+2} x^2_i -x_{i+2} x^3_i = 0,
\end{gather*}
where $\lbrack 3 \rbrack_q = \big(q^3-q^{-3}\big)/\big(q-q^{-1}\big)$. Let $V$ denote a $\square_q$-module. A vector $\xi\in V$ is called NIL whenever $x_1 \xi = 0 $ and $x_3 \xi=0$ and $\xi \not=0$. The $\square_q$-module $V$ is called NIL whenever $V$ is generated by a NIL vector. We show that up to isomorphism there exists a unique NIL $\square_q$-module, and it is irreducible and infinite-dimensional. We describe this module from sixteen points of view. In this description an important role is played by the $q$-shuffle algebra for affine $\mathfrak{sl}_2$.
Ключевые слова:
quantum group, $q$-Serre relations, derivation, $q$-Onsager algebra.
Поступила: 18 августа 2019 г.; в окончательном варианте 19 апреля 2020 г.; опубликована 4 мая 2020 г.
Образец цитирования:
Sarah Post, Paul Terwilliger, “An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$”, SIGMA, 16 (2020), 037, 35 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1574 https://www.mathnet.ru/rus/sigma/v16/p37
|
|