Аннотация:
In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are(n−1)-dimensional Bartnik data(Σn−1i,γi,Hi), i=1,2, NNSC-cobordant? (i.e., there is an n-dimensional compact Riemannian manifold (Ωn,g) with scalar curvature R(g)≥0 and the boundary ∂Ω=Σ1∪Σ2 such that γi is the metric on Σn−1i induced by g, and Hi is the mean curvature of Σi in (Ωn,g)). If (Sn−1,γstd,0) is positive scalar curvature (PSC) cobordant to (Σn−11,γ1,H1), where (Sn−1,γstd) denotes the standard round unit sphere then (Σn−11,γ1,H1) admits an NNSC fill-in. Just as Gromov's conjecture is connected with positive mass theorem, our problems are connected with Penrose inequality, at least in the case of n=3. Our third problem is on Λ(Σn−1,γ) defined below.
\RBibitem{HuShi20}
\by Xue~Hu, Yuguang~Shi
\paper NNSC-Cobordism of Bartnik Data in High Dimensions
\jour SIGMA
\yr 2020
\vol 16
\papernumber 030
\totalpages 5
\mathnet{http://mi.mathnet.ru/sigma1567}
\crossref{https://doi.org/10.3842/SIGMA.2020.030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528032700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084817379}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1567
https://www.mathnet.ru/rus/sigma/v16/p30
Эта публикация цитируется в следующих 3 статьяx:
Yuguang Shi, Wenlong Wang, Guodong Wei, “Total mean curvature of the boundary and nonnegative scalar curvature fill-ins”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2022:784 (2022), 215
Liu W., “A Matter of Time: Publication Dates in Web of Science Core Collection”, Scientometrics, 126:1 (2021), 849–857
Bo L., Shi Yu., “Nonexistence of the Nnsc-Cobordism of Bartnik Data”, Sci. China-Math., 64:7 (2021), 1357–1372