|
Exponents Associated with $Y$-Systems and their Relationship with $q$-Series
Yuma Mizuno Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Аннотация:
Let $X_r$ be a finite type Dynkin diagram, and $\ell$ be a positive integer greater than or equal to two. The $Y$-system of type $X_r$ with level $\ell$ is a system of algebraic relations, whose solutions have been proved to have periodicity. For any pair $(X_r, \ell)$, we define an integer sequence called exponents using formulation of the $Y$-system by cluster algebras. We give a conjectural formula expressing the exponents by the root system of type $X_r$, and prove this conjecture for $(A_1,\ell)$ and $(A_r, 2)$ cases. We point out that a specialization of this conjecture gives a relationship between the exponents and the asymptotic dimension of an integrable highest weight module of an affine Lie algebra. We also give a point of view from $q$-series identities for this relationship.
Ключевые слова:
cluster algebras, $Y$-systems, root systems, $q$-series.
Поступила: 27 сентября 2019 г.; в окончательном варианте 2 апреля 2020 г.; опубликована 18 апреля 2020 г.
Образец цитирования:
Yuma Mizuno, “Exponents Associated with $Y$-Systems and their Relationship with $q$-Series”, SIGMA, 16 (2020), 028, 42 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1565 https://www.mathnet.ru/rus/sigma/v16/p28
|
|