|
Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces
Simon Gindikin Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghysen Road, Piscataway, NJ 08854, USA
Аннотация:
We consider the horospherical transform and its inversion in 3 examples of hyperboloids. We want to illustrate via these examples the fact that the horospherical inversion formulas can be directly extracted from the classical Radon inversion formula. In a more broad context, this possibility reflects the fact that the harmonic analysis on symmetric spaces (Riemannian as well as pseudo-Riemannian ones) is equivalent (homologous), up to the Abelian Fourier transform, to the similar problem in the flat model. On the technical level it is important that we work not with the usual horospherical transform, but with its Cauchy modification.
Ключевые слова:
pseudo-hyperbolic spaces, hyperboloids, horospheres, horospherical transform, horospherical Cauchy transform.
Поступила: 28 октября 2019 г.; в окончательном варианте 29 марта 2020 г.; опубликована 7 апреля 2020 г.
Образец цитирования:
Simon Gindikin, “Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces”, SIGMA, 16 (2020), 024, 10 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1561 https://www.mathnet.ru/rus/sigma/v16/p24
|
|