|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity
Martin Klimeš Independent Researcher, Prague, Czech Republic
Аннотация:
We give a complete classification of analytic equivalence of germs of parametric families of systems of complex linear differential equations unfolding a generic resonant singularity of Poincaré rank 1 in dimension $n = 2$ whose leading matrix is a Jordan bloc. The moduli space of analytic equivalence classes is described in terms of a tuple of formal invariants and a single analytic invariant obtained from the trace of monodromy, and analytic normal forms are given. We also explain the underlying phenomena of confluence of two simple singularities and of a turning point, the associated Stokes geometry, and the change of order of Borel summability of formal solutions in dependence on a complex parameter.
Ключевые слова:
linear differential equations, confluence of singularities, Stokes phenomenon, monodromy, analytic classification, moduli space, biconfluent hypergeometric equation.
Поступила: 13 марта 2019 г.; в окончательном варианте 21 декабря 2019 г.; опубликована 23 января 2020 г.
Образец цитирования:
Martin Klimeš, “Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity”, SIGMA, 16 (2020), 006, 46 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1543 https://www.mathnet.ru/rus/sigma/v16/p6
|
Статистика просмотров: |
Страница аннотации: | 131 | PDF полного текста: | 34 | Список литературы: | 30 |
|