|
Flat Metrics with a Prescribed Derived Coframing
Robert L. Bryanta, Jeanne N. Clellandb a Duke University, Mathematics Department, P.O. Box 90320, Durham, NC 27708-0320, USA
b Department of Mathematics, 395 UCB, University of Colorado, Boulder, CO 80309-0395, USA
Аннотация:
The following problem is addressed: A $3$-manifold $M$ is endowed with a triple $\Omega = \big(\Omega^1,\Omega^2,\Omega^3\big)$ of closed $2$-forms. One wants to construct a coframing $\omega = \big(\omega^1,\omega^2,\omega^3\big)$ of $M$ such that, first, ${\rm d}\omega^i = \Omega^i$ for $i=1,2,3$, and, second, the Riemannian metric $g=\big(\omega^1\big)^2+\big(\omega^2\big)^2+\big(\omega^3\big)^2$ be flat. We show that, in the ‘nonsingular case’, i.e., when the three $2$-forms $\Omega^i_p$ span at least a $2$-dimensional subspace of $\Lambda^2(T^*_pM)$ and are real-analytic in some $p$-centered coordinates, this problem is always solvable on a neighborhood of $p\in M$, with the general solution $\omega$ depending on three arbitrary functions of two variables. Moreover, the characteristic variety of the generic solution $\omega$ can be taken to be a nonsingular cubic. Some singular situations are considered as well. In particular, we show that the problem is solvable locally when $\Omega^1$, $\Omega^2$, $\Omega^3$ are scalar multiples of a single 2-form that do not vanish simultaneously and satisfy a nondegeneracy condition. We also show by example that solutions may fail to exist when these conditions are not satisfied.
Ключевые слова:
exterior differential systems, metrization.
Поступила: 28 августа 2019 г.; в окончательном варианте 9 января 2020 г.; опубликована 20 января 2020 г.
Образец цитирования:
Robert L. Bryant, Jeanne N. Clelland, “Flat Metrics with a Prescribed Derived Coframing”, SIGMA, 16 (2020), 004, 23 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1541 https://www.mathnet.ru/rus/sigma/v16/p4
|
Статистика просмотров: |
Страница аннотации: | 264 | PDF полного текста: | 41 | Список литературы: | 23 |
|