|
Эта публикация цитируется в 20 научных статьях (всего в 20 статьях)
Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
Richárd Rimányia, Andrey Smirnovba, Alexander Varchenkoac, Zijun Zhoud a Department of Mathematics, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599-3250, USA
b Institute for Problems of Information Transmission,
Bolshoy Karetny 19, Moscow 127994, Russia
c Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow GSP-1, Russia
d Department of Mathematics, Stanford University,
450 Serra Mall, Stanford, CA 94305, USA
Аннотация:
Let $X$ be a holomorphic symplectic variety with a torus $\mathsf{T}$ action and a finite fixed point set of cardinality $k$. We assume that elliptic stable envelope exists for $X$. Let $A_{I,J}= \operatorname{Stab}(J)|_{I}$ be the $k\times k$ matrix of restrictions of the elliptic stable envelopes of $X$ to the fixed points. The entries of this matrix are theta-functions of two groups of variables: the Kähler parameters and equivariant parameters of $X$. We say that two such varieties $X$ and $X'$ are related by the 3d mirror symmetry if the fixed point sets of $X$ and $X'$ have the same cardinality and can be identified so that the restriction matrix of $X$ becomes equal to the restriction matrix of $X'$ after transposition and interchanging the equivariant and Kähler parameters of $X$, respectively, with the Kähler and equivariant parameters of $X'$. The first examples of pairs of 3d symmetric varieties were constructed in [Rimányi R., Smirnov A., Varchenko A., Zhou Z., arXiv: 1902.03677], where the cotangent bundle $T^*\operatorname{Gr}(k,n)$ to a Grassmannian is proved to be a 3d mirror to a Nakajima quiver variety of $A_{n-1}$-type. In this paper we prove that the cotangent bundle of the full flag variety is 3d mirror self-symmetric. That statement in particular leads to nontrivial theta-function identities.
Ключевые слова:
equivariant elliptic cohomology; elliptic stable envelope; 3d mirror symmetry.
Поступила: 8 июля 2019 г.; в окончательном варианте 18 ноября 2019 г.; опубликована 28 ноября 2019 г.
Образец цитирования:
Richárd Rimányi, Andrey Smirnov, Alexander Varchenko, Zijun Zhou, “Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety”, SIGMA, 15 (2019), 093, 22 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1529 https://www.mathnet.ru/rus/sigma/v15/p93
|
Статистика просмотров: |
Страница аннотации: | 121 | PDF полного текста: | 37 | Список литературы: | 19 |
|