|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
Orlando Ragniscoa, Ángel Ballesterosb, Francisco J. Herranzb, Fabio Mussoa a Dipartimento di Fisica, Università di Roma Tre and Instituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma, ItalyUniversità degli Studi Roma Tre
b Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain
Аннотация:
An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of $(2N-3)$ integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum $sl(2,\mathbb R)$ Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter $z$. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter $z$. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
Ключевые слова:
integrable systems; quantum groups; curvature; contraction; harmonic oscillator; Kepler–Coulomb; hyperbolic; de Sitter.
Поступила: 12 ноября 2006 г.; в окончательном варианте 22 января 2007 г.; опубликована 14 февраля 2007 г.
Образец цитирования:
Orlando Ragnisco, Ángel Ballesteros, Francisco J. Herranz, Fabio Musso, “Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature”, SIGMA, 3 (2007), 026, 20 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma152 https://www.mathnet.ru/rus/sigma/v3/p26
|
|