|
Stratified Bundles on Curves and Differential Galois Groups in Positive Characteristic
Marius van der Put Bernoulli Institute, University of Groningen, P.O. Box 407, 9700 AG Groningen, The Netherlands
Аннотация:
Stratifications and iterative differential equations are analogues in positive characteristic of complex linear differential equations. There are few explicit examples of stratifications. The main goal of this paper is to construct stratifications on projective or affine curves in positive characteristic and to determine the possibilities for their differential Galois groups. For the related “differential Abhyankar conjecture” we present partial answers, supplementing the literature. The tools for the construction of regular singular stratifications and the study of their differential Galois groups are $p$-adic methods and rigid analytic methods using Mumford curves and Mumford groups. These constructions produce many stratifications and differential Galois groups. In particular, some information on the tame fundamental groups of affine curves is obtained.
Ключевые слова:
stratified bundle, differential equations, positive characteristic, fundamental group, Mumford curve, Mumford group, differential Galois group.
Поступила: 10 декабря 2018 г.; в окончательном варианте 14 сентября 2019 г.; опубликована 21 сентября 2019 г.
Образец цитирования:
Marius van der Put, “Stratified Bundles on Curves and Differential Galois Groups in Positive Characteristic”, SIGMA, 15 (2019), 071, 24 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1507 https://www.mathnet.ru/rus/sigma/v15/p71
|
Статистика просмотров: |
Страница аннотации: | 114 | PDF полного текста: | 44 | Список литературы: | 18 |
|