|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
Willy Sarlet Department of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
Аннотация:
We review properties of so-called special conformal Killing tensors on a Riemannian manifold $(Q,g)$ and the way they give rise to a Poisson–Nijenhuis structure on the tangent bundle $TQ$. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function $E$, homogeneous of degree two in the fibre coordinates on $TQ$. It is shown that when a symmetric
type (1,1) tensor field $K$ along the tangent bundle projection $\tau\colon TQ\rightarrow Q$ satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem.
Ключевые слова:
special conformal Killing tensors; Finsler spaces.
Поступила: 30 октября 2006 г.; в окончательном варианте 17 января 2007 г.; опубликована 13 февраля 2007 г.
Образец цитирования:
Willy Sarlet, “A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold”, SIGMA, 3 (2007), 024, 9 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma150 https://www.mathnet.ru/rus/sigma/v3/p24
|
|