Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2005, том 1, 015, 17 стр.
DOI: https://doi.org/10.3842/SIGMA.2005.015
(Mi sigma15)
 

Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)

Second Order Superintegrable Systems in Three Dimensions

Willard Miller

School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
Список литературы:
Аннотация: A classical (or quantum) superintegrable system on an $n$-dimensional Riemannian manifold is an integrable Hamiltonian system with potential that admits $2n-1$ functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the motion are all quadratic, the system is second order superintegrable. Such systems have remarkable properties. Typical properties are that 1) they are integrable in multiple ways and comparison of ways of integration leads to new facts about the systems, 2) they are multiseparable, 3) the second order symmetries generate a closed quadratic algebra and in the quantum case the representation theory of the quadratic algebra yields important facts about the spectral resolution of the Schrödinger operator and the other symmetry operators, and 4) there are deep connections with expansion formulas relating classes of special functions and with the theory of Exact and Quasi-exactly Solvable systems. For $n=2$ the author, E.G. Kalnins and J. Kress, have worked out the structure of these systems and classified all of the possible spaces and potentials. Here I discuss our recent work and announce new results for the much more difficult case $n=3$. We consider classical superintegrable systems with nondegenerate potentials in three dimensions and on a conformally flat real or complex space. We show that there exists a standard structure for such systems, based on the algebra of $3\times 3$ symmetric matrices, and that the quadratic algebra always closes at order 6. We describe the Stäckel transformation, an invertible conformal mapping between superintegrable structures on distinct spaces, and give evidence indicating that all our superintegrable systems are Stäckel transforms of systems on complex Euclidean space or the complex 3-sphere. We also indicate how to extend the classical 2D and 3D superintegrability theory to include the operator (quantum) case.
Ключевые слова: superintegrability; quadratic algebra; conformally flat spaces.
Поступила: 28 октября 2005 г.; опубликована 13 ноября 2005 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Willard Miller, “Second Order Superintegrable Systems in Three Dimensions”, SIGMA, 1 (2005), 015, 17 pp.
Цитирование в формате AMSBIB
\RBibitem{Mil05}
\by Willard Miller
\paper Second Order Superintegrable Systems in Three Dimensions
\jour SIGMA
\yr 2005
\vol 1
\papernumber 015
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma15}
\crossref{https://doi.org/10.3842/SIGMA.2005.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2169838}
\zmath{https://zbmath.org/?q=an:1128.37038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207064600015}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma15
  • https://www.mathnet.ru/rus/sigma/v1/p15
  • Эта публикация цитируется в следующих 8 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:268
    PDF полного текста:54
    Список литературы:55
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024