|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds
Claudia Chanu, Giovanni Rastelli Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
Аннотация:
Given a $n$-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton–Jacobi equation by means of the eigenvalues of $m\leq n$ Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about
the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the $L$-systems is provided.
Ключевые слова:
variable separation; Hamilton–Jacobi equation; Killing tensors; (pseudo-) Riemannian manifolds.
Поступила: 2 ноября 2006 г.; в окончательном варианте 16 января 2007 г.; опубликована 6 февраля 2007 г.
Образец цитирования:
Claudia Chanu, Giovanni Rastelli, “Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds”, SIGMA, 3 (2007), 021, 21 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma147 https://www.mathnet.ru/rus/sigma/v3/p21
|
|