|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
$p$-Adic Properties of Hauptmoduln with Applications to Moonshine
Ryan C. Chen, Samuel Marks, Matthew Tyler Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
Аннотация:
The theory of monstrous moonshine asserts that the coefficients of Hauptmoduln, including the $j$-function, coincide precisely with the graded characters of the monster module, an infinite-dimensional graded representation of the monster group. On the other hand, Lehner and Atkin proved that the coefficients of the $j$-function satisfy congruences modulo $p^n$ for $p \in \{2, 3, 5, 7, 11\}$, which led to the theory of $p$-adic modular forms. We combine these two aspects of the $j$-function to give a general theory of congruences modulo powers of primes satisfied by the Hauptmoduln appearing in monstrous moonshine. We prove that many of these Hauptmoduln satisfy such congruences, and we exhibit a relationship between these congruences and the group structure of the monster. We also find a distinguished class of subgroups of the monster with graded characters satisfying such congruences.
Ключевые слова:
modular forms congruences; $p$-adic modular forms; moonshine.
Поступила: 19 сентября 2018 г.; в окончательном варианте 10 апреля 2019 г.; опубликована 29 апреля 2019 г.
Образец цитирования:
Ryan C. Chen, Samuel Marks, Matthew Tyler, “$p$-Adic Properties of Hauptmoduln with Applications to Moonshine”, SIGMA, 15 (2019), 033, 35 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1469 https://www.mathnet.ru/rus/sigma/v15/p33
|
Статистика просмотров: |
Страница аннотации: | 369 | PDF полного текста: | 50 | Список литературы: | 49 |
|