|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
A Family of $\mathrm{GL}_r$ Multiplicative Higgs Bundles on Rational Base
Rouven Frassek, Vasily Pestun Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
Аннотация:
In this paper we study a restricted family of holomorphic symplectic leaves in the Poisson–Lie group $\mathrm{GL}_r(\mathcal{K}_{\mathbb{P}^1_x})$ with rational quadratic Sklyanin brackets induced by a one-form with a single quadratic pole at $\infty \in \mathbb{P}_{1}$. The restriction of the family is that the matrix elements in the defining representation are linear functions of $x$. We study how the symplectic leaves in this family are obtained by the fusion of certain fundamental symplectic leaves. These symplectic leaves arise as minimal examples of (i) moduli spaces of multiplicative Higgs bundles on $\mathbb{P}^{1}$ with prescribed singularities, (ii) moduli spaces of $U(r)$ monopoles on $\mathbb{R}^2 \times S^1$ with Dirac singularities, (iii) Coulomb branches of the moduli space of vacua of 4d $\mathcal{N}=2$ supersymmetric $A_{r-1}$ quiver gauge theories compactified on a circle. While degree 1 symplectic leaves regular at $\infty \in \mathbb{P}^1$ (Coulomb branches of the superconformal quiver gauge theories) are isomorphic to co-adjoint orbits in $\mathfrak{gl}_{r}$ and their Darboux parametrization and quantization is well known, the case irregular at infinity (asymptotically free quiver gauge theories) is novel. We also explicitly quantize the algebra of functions on these moduli spaces by presenting the corresponding solutions to the quantum Yang–Baxter equation valued in Heisenberg algebra (free field realization).
Ключевые слова:
symplectic leaves, Poisson–Lie group, Yang–Baxter equation, Sklyanin brackets, Coulomb branch, multiplicative Higgs bundles.
Поступила: 9 сентября 2018 г.; в окончательном варианте 10 апреля 2019 г.; опубликована 25 апреля 2019 г.
Образец цитирования:
Rouven Frassek, Vasily Pestun, “A Family of $\mathrm{GL}_r$ Multiplicative Higgs Bundles on Rational Base”, SIGMA, 15 (2019), 031, 42 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1467 https://www.mathnet.ru/rus/sigma/v15/p31
|
Статистика просмотров: |
Страница аннотации: | 194 | PDF полного текста: | 39 | Список литературы: | 31 |
|