|
$\tau$-Functions, Birkhoff Factorizations and Difference Equations
Darlayne Addabboa, Maarten Bergveltb a Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA
b Department of Mathematics, University of Illinois, Urbana-Champaign, IL 61801, USA
Аннотация:
$Q$-systems and $T$-systems are systems of integrable difference equations that have recently attracted much attention, and have wide applications in representation theory and statistical mechanics. We show that certain $\tau$-functions, given as matrix elements of the action of the loop group of ${\rm GL}_{2}$ on two-component fermionic Fock space, give solutions of a $Q$-system. An obvious generalization using the loop group of ${\rm GL}_3$ acting on three-component fermionic Fock space leads to a new system of $4$ difference equations.
Ключевые слова:
integrable systems; $\tau$-functions; $Q$- and $T$-systems; Birkhoff factorizations.
Поступила: 24 июля 2018 г.; в окончательном варианте 5 марта 2019 г.; опубликована 27 марта 2019 г.
Образец цитирования:
Darlayne Addabbo, Maarten Bergvelt, “$\tau$-Functions, Birkhoff Factorizations and Difference Equations”, SIGMA, 15 (2019), 023, 42 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1459 https://www.mathnet.ru/rus/sigma/v15/p23
|
|