Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2019, том 15, 017, 51 стр.
DOI: https://doi.org/10.3842/SIGMA.2019.017
(Mi sigma1453)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Ghostpeakons and Characteristic Curves for the Camassa–Holm, Degasperis–Procesi and Novikov Equations

Hans Lundmark, Budor Shuaib

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Список литературы:
Аннотация: We derive explicit formulas for the characteristic curves associated with the multipeakon solutions of the Camassa–Holm, Degasperis–Procesi and Novikov equations. Such a curve traces the path of a fluid particle whose instantaneous velocity equals the elevation of the wave at that point (or the square of the elevation, in the Novikov case). The peakons themselves follow characteristic curves, and the remaining characteristic curves can be viewed as paths of “ghostpeakons” with zero amplitude; hence, they can be obtained as solutions of the ODEs governing the dynamics of multipeakon solutions. The previously known solution formulas for multipeakons only cover the case when all amplitudes are nonzero, since they are based upon inverse spectral methods unable to detect the ghostpeakons. We show how to overcome this problem by taking a suitable limit in terms of spectral data, in order to force a selected peakon amplitude to become zero. Moreover, we use direct integration to compute the characteristic curves for the solution of the Degasperis–Procesi equation where a shockpeakon forms at a peakon–antipeakon collision. In addition to the theoretical interest in knowing the characteristic curves, they are also useful for plotting multipeakon solutions, as we illustrate in several examples.
Ключевые слова: peakons; characteristic curves; Camassa–Holm equation; Degasperis–Procesi equation; Novikov equation.
Финансовая поддержка Номер гранта
Swedish Research Council 2010-5822
Linköping University
This work has been in the making for a long period, during parts of which Hans Lundmark was supported by the Swedish Research Council (Vetenskapsrådet, grant 2010-5822) and Budor Shuaib by the Libyan Higher Education Ministry. We are also grateful to the Department of Mathematics at Link¨oping University for financial support.
Поступила: 6 июля 2018 г.; в окончательном варианте 19 февраля 2019 г.; опубликована 6 марта 2019 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Hans Lundmark, Budor Shuaib, “Ghostpeakons and Characteristic Curves for the Camassa–Holm, Degasperis–Procesi and Novikov Equations”, SIGMA, 15 (2019), 017, 51 pp.
Цитирование в формате AMSBIB
\RBibitem{LunShu19}
\by Hans~Lundmark, Budor~Shuaib
\paper Ghostpeakons and Characteristic Curves for the Camassa--Holm, Degasperis--Procesi and Novikov Equations
\jour SIGMA
\yr 2019
\vol 15
\papernumber 017
\totalpages 51
\mathnet{http://mi.mathnet.ru/sigma1453}
\crossref{https://doi.org/10.3842/SIGMA.2019.017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460565600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068671502}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1453
  • https://www.mathnet.ru/rus/sigma/v15/p17
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024