|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
The $q$-Borel Sum of Divergent Basic Hypergeometric Series ${}_r\varphi_s(a;b;q,x)$
Shunya Adachi Graduate School of Education, Aichi University of Education, Kariya 448-8542, Japan
Аннотация:
We study the divergent basic hypergeometric series which is a $q$-analog of divergent hypergeometric series. This series formally satisfies the linear $q$-difference equation. In this paper, for that equation, we give an actual solution which admits basic hypergeometric series as a $q$-Gevrey asymptotic expansion. Such an actual solution is obtained by using $q$-Borel summability, which is a $q$-analog of Borel summability. Our result shows a $q$-analog of the Stokes phenomenon. Additionally, we show that letting $q\to1$ in our result gives the Borel sum of classical hypergeometric series. The same problem was already considered by Dreyfus, but we note that our result is remarkably different from his one.
Ключевые слова:
basic hypergeometric series; $q$-difference equation; divergent power series solution; $q$-Borel summability; $q$-Stokes phenomenon.
Поступила: 15 июня 2018 г.; в окончательном варианте 24 февраля 2019 г.; опубликована 5 марта 2019 г.
Образец цитирования:
Shunya Adachi, “The $q$-Borel Sum of Divergent Basic Hypergeometric Series ${}_r\varphi_s(a;b;q,x)$”, SIGMA, 15 (2019), 016, 12 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1452 https://www.mathnet.ru/rus/sigma/v15/p16
|
|