|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
A Geometric Approach to the Concept of Extensivity in Thermodynamics
Miguel Ángel García-Ariza Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72750, Puebla, Pue., Mexico
Аннотация:
This paper presents a rigorous treatment of the concept of extensivity in equilibrium thermodynamics from a geometric point of view. This is achieved by endowing the manifold of equilibrium states of a system with a smooth atlas that is compatible with the pseudogroup of transformations on a vector space that preserve the radial vector field. The resulting geometric structure allows for accurate definitions of extensive differential forms and scaling, and the well-known relationship between both is reproduced. This structure is represented by a global vector field that is locally written as a radial one. The submanifolds that are transversal to it are embedded, and locally defined by extensive functions.
Ключевые слова:
homogeneous functions; extensive variables; equilibrium thermodynamics.
Поступила: 24 мая 2018 г.; в окончательном варианте 22 февраля 2019 г.; опубликована 2 марта 2019 г.
Образец цитирования:
Miguel Ángel García-Ariza, “A Geometric Approach to the Concept of Extensivity in Thermodynamics”, SIGMA, 15 (2019), 015, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1451 https://www.mathnet.ru/rus/sigma/v15/p15
|
Статистика просмотров: |
Страница аннотации: | 144 | PDF полного текста: | 36 | Список литературы: | 38 |
|