|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Nonlocal Symmetries and Generation of Solutions for Partial Differential Equations
Valentyn Tychynina, Olga Petrovab, Olesya Tertyshnykb a Prydniprovs'ka State Academy of Civil Engineering and Architecture, 24a Chernyshevsky Str., Dnipropetrovsk, 49005 Ukraine
b Dnipropetrovsk National University, 13 Naukovyi Per., Dnipropetrovsk, 49050 Ukraine
Аннотация:
We have constructed new formulae for generation of solutions for the nonlinear heat equation and for the Burgers equation that are based on linearizing nonlocal transformations and on nonlocal symmetries of linear equations. Found nonlocal symmetries and formulae of nonlocal nonlinear superposition of solutions of these equations were used then for construction of chains of exact solutions. Linearization by means of the Legendre transformations of a second-order PDE with three independent variables allowed to obtain nonlocal superposition formulae for solutions of this equation, and to generate new solutions from group invariant
solutions of a linear equation.
Ключевые слова:
Lie classical symmetry; nonlocal symmetries; formulae for generation of solutions; nonlinear superposition principle.
Поступила: 6 января 2006 г.; в окончательном варианте 17 января 2007 г.; опубликована 6 февраля 2007 г.
Образец цитирования:
Valentyn Tychynin, Olga Petrova, Olesya Tertyshnyk, “Nonlocal Symmetries and Generation of Solutions for Partial Differential Equations”, SIGMA, 3 (2007), 019, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma145 https://www.mathnet.ru/rus/sigma/v3/p19
|
|