|
Singular Degenerations of Lie Supergroups of Type $D(2,1;a)$
Kenji Ioharaa, Fabio Gavarinib a Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne Cedex, France
b Dipartimento di Matematica, Università di Roma ''Tor Vergata'', Via della ricerca scientifica 1, I-00133 Roma, Italy
Аннотация:
The complex Lie superalgebras $\mathfrak{g}$ of type $D(2,1;a)$ – also denoted by $\mathfrak{osp}(4,2;a) $ – are usually considered for “non-singular” values of the parameter $a$, for which they are simple. In this paper we introduce five suitable integral forms of $\mathfrak{g}$, that are well-defined at singular values too, giving rise to “singular specializations” that are no longer simple: this extends the family of simple objects of type $D(2,1;a)$ in five different ways. The resulting five families coincide for general values of $ a$, but are different at “singular” ones: here they provide non-simple Lie superalgebras, whose structure we describe explicitly. We also perform the parallel construction for complex Lie supergroups and describe their singular specializations (or “degenerations”) at singular values of $a$. Although one may work with a single complex parameter $a$, in order to stress the overall $\mathfrak{S}_3$-symmetry of the whole situation, we shall work (following Kaplansky) with a two-dimensional parameter $\sigma = (\sigma_1,\sigma_2,\sigma_3)$ ranging in the complex affine plane $\sigma_1 + \sigma_2 + \sigma_3 = 0$.
Ключевые слова:
Lie superalgebras; Lie supergroups; singular degenerations; contractions.
Поступила: 31 октября 2017 г.; в окончательном варианте 11 декабря 2018 г.; опубликована 31 декабря 2018 г.
Образец цитирования:
Kenji Iohara, Fabio Gavarini, “Singular Degenerations of Lie Supergroups of Type $D(2,1;a)$”, SIGMA, 14 (2018), 137, 36 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1436 https://www.mathnet.ru/rus/sigma/v14/p137
|
Статистика просмотров: |
Страница аннотации: | 126 | PDF полного текста: | 156 | Список литературы: | 27 |
|