|
Parallels between Moduli of Quiver Representations and Vector Bundles over Curves
Victoria Hoskins Freie Universität Berlin, Arnimallee 3, Raum 011, 14195 Berlin, Germany
Аннотация:
This is a review article exploring similarities between moduli of quiver representations and moduli of vector bundles over a smooth projective curve. After describing the basic properties of these moduli problems and constructions of their moduli spaces via geometric invariant theory and symplectic reduction, we introduce their hyperkähler analogues: moduli spaces of representations of a doubled quiver satisfying certain relations imposed by a moment map and moduli spaces of Higgs bundles. Finally, we survey a surprising link between the counts of absolutely indecomposable objects over finite fields and the Betti cohomology of these (complex) hyperkähler moduli spaces due to work of Crawley-Boevey and Van den Bergh and Hausel, Letellier and Rodriguez-Villegas in the quiver setting, and work of Schiffmann in the bundle setting.
Ключевые слова:
algebraic moduli problems; geometric invariant theory; representation theory of quivers; vector bundles and Higgs bundles on curves.
Поступила: 25 сентября 2018 г.; в окончательном варианте 18 ноября 2018 г.; опубликована 4 декабря 2018 г.
Образец цитирования:
Victoria Hoskins, “Parallels between Moduli of Quiver Representations and Vector Bundles over Curves”, SIGMA, 14 (2018), 127, 46 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1426 https://www.mathnet.ru/rus/sigma/v14/p127
|
Статистика просмотров: |
Страница аннотации: | 198 | PDF полного текста: | 61 | Список литературы: | 26 |
|