|
Truncated Solutions of Painlevé Equation $\mathrm{P_V}$
Rodica D. Costin The Ohio State University, 231 W 18th Ave, Columbus, OH 43210, USA
Аннотация:
We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlevé equation with nonzero parameters, valid in half planes, for large independent variable. We also find the position of the first array of poles, bordering the region of analyticity. For a special value of this parameter they represent tri-truncated solutions, analytic in almost the full complex plane, for large independent variable. A brief historical note, and references on truncated solutions of the other Painlevé equations are also included.
Ключевые слова:
Painlevé trascendents; the fifth Painlevé equation; truncated solutions; poles of truncated solutions.
Поступила: 1 мая 2018 г.; в окончательном варианте 25 октября 2018 г.; опубликована 31 октября 2018 г.
Образец цитирования:
Rodica D. Costin, “Truncated Solutions of Painlevé Equation $\mathrm{P_V}$”, SIGMA, 14 (2018), 117, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1416 https://www.mathnet.ru/rus/sigma/v14/p117
|
Статистика просмотров: |
Страница аннотации: | 112 | PDF полного текста: | 30 | Список литературы: | 30 |
|