|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative
Rafaela N. Bonfima, Jean C. Guellab, Valdir A. Menegattob a DEMAT-Universidade Federal de São João Del Rei, Praça Frei Orlando, 170, Centro, 36307-352 São João del Rei - MG, Brazil
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos - SP, Brazil
Аннотация:
For two continuous and isotropic positive definite kernels on the same compact two-point homogeneous space, we determine necessary and sufficient conditions in order that their product be strictly positive definite. We also provide a similar characterization for kernels on the space-time setting $G \times S^d$, where $G$ is a locally compact group and $S^d$ is the unit sphere in $\mathbb{R}^{d+1}$, keeping isotropy of the kernels with respect to the $S^d$ component. Among other things, these results provide new procedures for the construction of valid models for interpolation and approximation on compact two-point homogeneous spaces.
Ключевые слова:
strict positive definiteness; spheres; product kernels; linearization formulas; isotropy.
Поступила: 8 марта 2018 г.; в окончательном варианте 10 октября 2018 г.; опубликована 16 октября 2018 г.
Образец цитирования:
Rafaela N. Bonfim, Jean C. Guella, Valdir A. Menegatto, “Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative”, SIGMA, 14 (2018), 112, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1411 https://www.mathnet.ru/rus/sigma/v14/p112
|
|